

Introduction

Abandoned calcareous grassland near Sabile

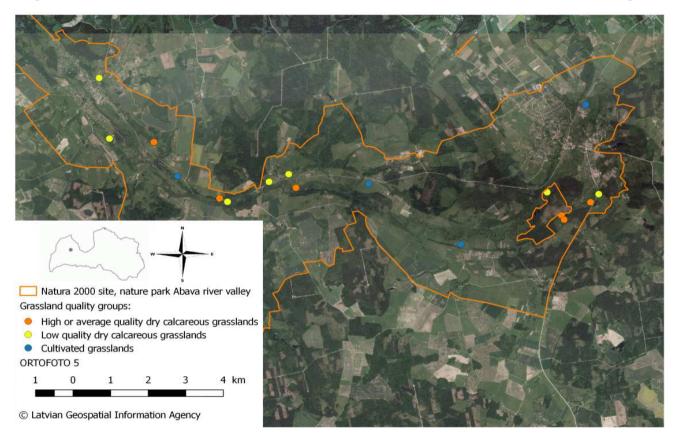
Extensively grazed calcareous grassland near Kandava

Introduction

Chorthippus bruneus
Photo: V. Vintulis

Euthystira brachyptera Photo: V. Spuņģis

Harpalus latus Photo: V. Spuņģis


Aim of study:

to analyze how the grassland quality, management and abandonment affect grasshopper and ground beetle diversity in dry calcareous grasslands of the Abava River valley

Hypothesis:

grassland quality and management can have diverse effects on insect species, depending on their ecology

Study area - Abava River valley

Methods

The variety of grasslands (n=17) researched in Abava River valley

- average to high quality calcareous grasslands* (n = 6);
- abandoned, low quality calcareous grasslands (n = 7);
- cultivated grasslands**
 (n = 4)
- * Extensive razing (n=2), mowing in august (n=1) or no management
- ** Mowing in June/July

Good quality calcareous grassland with no management

Low quality, abandoned calcareous grassland

Good quality, extensively grazed calcareous grassland

Mowed, cultivated calcareous grassland

Methods

Vegetation characterization:

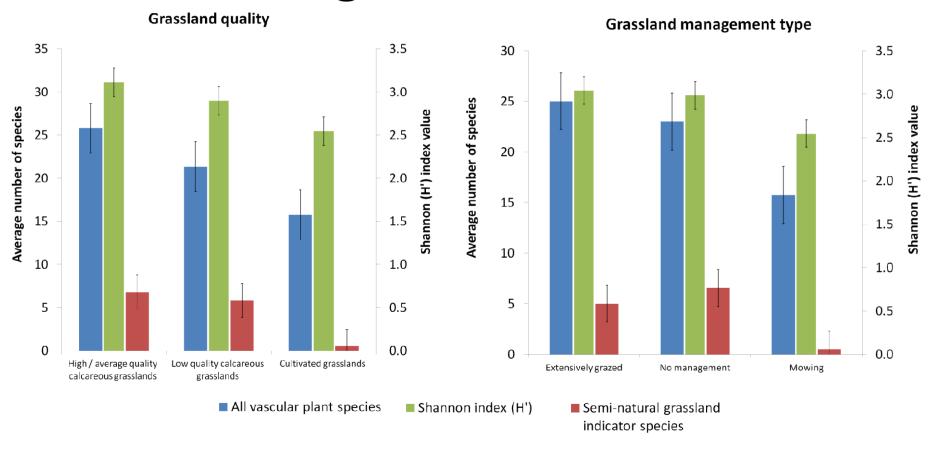
All plant species 25m² All plant species 1m² Structures 10 x 1m² Expansive species SNG indicator species

Soil parameters: pH, relative humidity

Grasshoppers and ground beetles:

10 pitfall traps per grassland, exposed in periods of two weeks:

- 1) 15. June 29. June
- 2) 21. July 4. August
- 2) 25. August 8. September


Results – soil parameters

Soil parameter	High / average quality calcareous grasslands	Low quality calcareous grasslands	Cultivated grasslands
Average pH level	6.89	7.49	6.34
Average relative humidity (%)	8.41	8.37	2.44

- The differences are not significant (p>0.05, Kruskal-Wallis test)
- Soil humidity and pH level tend to be relatively lower in cultivated, mown grasslands

Results – Vegetation

All differences are statistically significant (Kruskal-Wallis test, p<0.05).

Characteristic vegetation parameters for grassland **quality groups**, obtained from **indicator species analysis**.

High / average quality calcareous grasslands

- Number of semi-natural grassland indicator species (IV=54.5)
- •Agrimonia eupatoria (IV=55.1), Filipendula vulgaris (IV=55.0), Fragaria viridis (IV=63.6), Potentilla erecta (IV=58.4), Trifolium arvense (IV=56.5)

Low quality calcareous grasslands

- Litter cover (IV=51.3) and thickness (IV=54.9)
- Inula salicina (IV=66.7)

Cultivated grasslands

- Cover of expansive species (IV=64.3)
- Dactylis glomerata (IV=58.2), Taraxacum officinale (IV=95.5), Trifolium pratense (IV=56.2)

Only significant results are shown (p<0.05)

Characteristic vegetation parameters for grassland **management groups**, obtained from **indicator species analysis**.

Extensive grazing

- •Moss cover (IV=76.7)
- Centaurea jacea (IV=75.0), Daucus carrota (IV=93.1), Fragaria viridis (IV=61.2), Potentilla erecta (IV=73.8), Prunella vulgaris (IV=100.0), Primula veris (IV=62.6)

Abandoned

- Number of semi-natural grassland indicator species (IV=57.6)
- Litter cover (IV=62.2) and thickness (IV=56.8)
- Centaurea scabiosa (IV=68.4)

Mowing

- Cover of expansive species (IV=70.2)
- Dactylis glomerata (IV=59.4), Taraxacum officinale (IV=96.9)

Only significant results are shown (p<0.05)

Results – grasshopper and ground beetle fauna

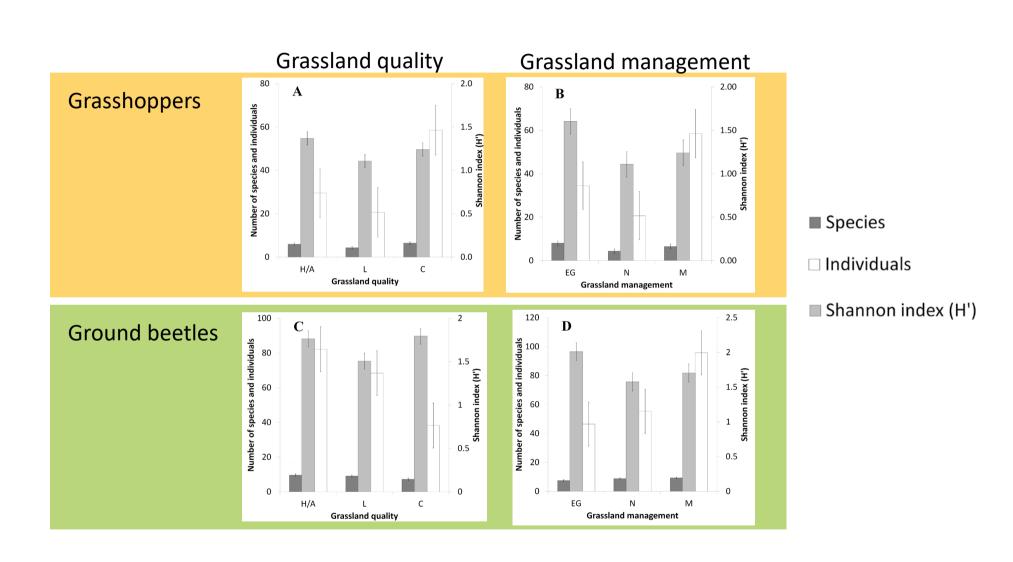
Grasshoppers

506 individuals of 18 species

The most common species:

- Omocestus viridulus
- Chorthippus paralellus
- Euthystira brachyptera
- Chorthippus albomarginatus

Euthystira brachyptera Photo: V. Spuņģis


Ground beetles

1094 individuals of 41 species

The most common species:

- Poecilus versicolor
- Poecilus cupreus
- Amara aenea

23 species characteristic to dry, calcareous grasslands

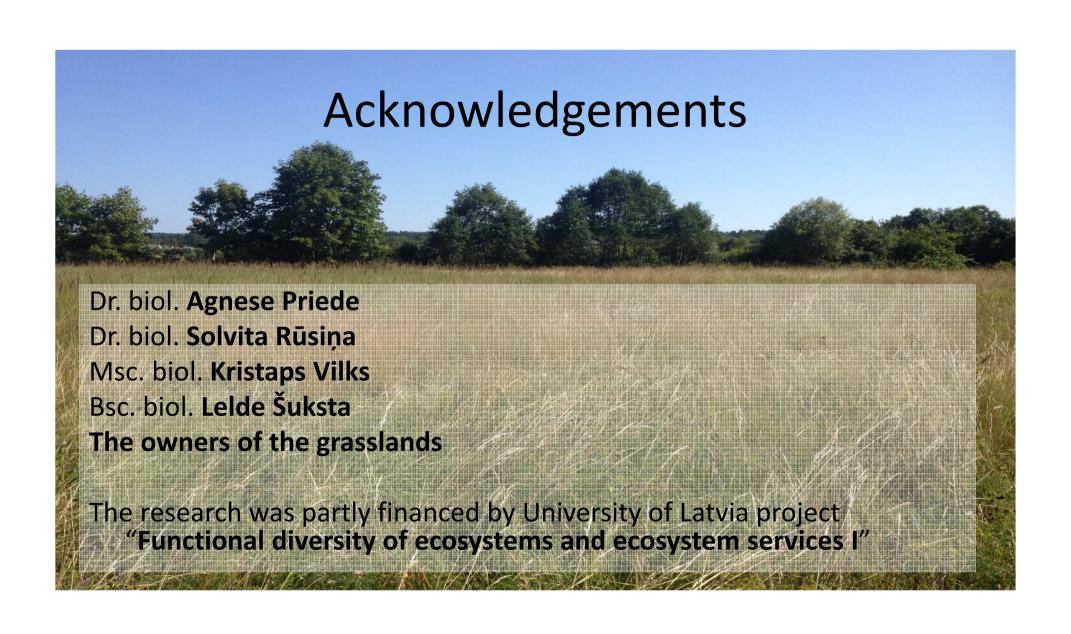
Indicators

Grassland group		Family	Species	Indicator value (IV)
	High / average quality calcareous grasslands	-	-	-
Relative quality	Low quality calcareous grasslands	-	-	-
	Cultivated grasslands	Acrididae Carabidae Carabidae Acrididae Carabidae Carabidae Carabidae Carabidae	Chorthippus dorsatus Amara communis Amara aenea Chorthippus albomarginatus Poecilus versicolor Poecilus cupreus Harpalus latus Ophonus rufipes	100.0 88.8 73.5 73.1 69.8 66.7 64.5 63.9
Management type	Extensive grazing	Acrididae	Chorthippus apricarius	87.1
	No management	Tettigoniidae	Metrioptera brachyptera	75.7
	Mowing	Acrididae Carabidae Carabidae Acrididae Carabidae	Chorthippus dorsatus Amara aenea Amara communis Chorthippus albomarginatus Harpalus latus	100.0 84.1 78.1 73.8 68.7

Significance level 0.05. Only species with indicator value (IV) greater than 50.0 are shown.

Discussion – further research

- characteristic species of calcareous grasslands
- broader range of insect functional groups – multitaxon approach


Discussion — the negative role of *Inula salicina* and *Rubus caesius* codomination

Conclusions

- High/average botanical quality grasslands have the highest value for the conservation of grasshopper and ground beetle diversity. Extensive grazing also had a positive influence on both grasshopper and ground beetle species diversity.
- The main factors that influence grasshoppers in dry, calcareous grasslands are microclimate, vegetation structure and species composition and grassland management. The main factors influencing ground beetles were vegetation height, herbaceous plant cover and soil pH level.
- Grasshopper and ground beetle species composition has to be considered when assessing the importance of dry, calcareous grasslands for insect conservation.

