Changing of assembly rules during secondary succession: are there trends?

Introduction

- Assembly rule (Diamond 1975, Keddy 1992): <u>ecological process</u> selecting species from regional species pool and thus determining local community composition (HilleRisLambers et al. 2012, Götzenberger et al. 2012)
- Rules ~ filters
- Dispersal, environmental and biotic filters
- Aiming to detect possible processes from observed data

Study of assembly rules

- Species-based or trait-based approach
- Appropriate spatial scale, environmental gradient, heterogenity
- Detect the assembly rule = detect the departure from random pattern,
- Trait specific pattern
- An example: Lhotsky et al. 2016, J of Ecology trait based, long environmental gradient

Divergence in trait distribution → Biotic filter

Convergence in trait distribution → Environmental filter is present

More productive end, ~wetland

Less productive end, ~dry grassland

New: Succession can be also an environmental gradient

- Hypothesis: Community composition assembling during the succession are also partly non-random, there are assembly rules forming the new community and these change with time
- After crossing the dispersal limitation, environmental filtering will be dominant at the beginning of succession
- Biotic interactions will be important later in the succession
- Use of traits help in generalization

Our aims

- Describe the pattern of changes of functional traits during old-field succession
- Determine the presence and changes of assembly rules during the succession on basis of selected traits
- Comparing the assembly rules on old-fields assumed on the basis of space-for-time substitution and on long-term observation.

Methods

- Kiskun-LTER field site network
- 40 permanent vegetation plot, 4x4 m
- 4 age group (10 plot/AG),
 - abandoned between 1994-1999
 - abandoned between 1994-1989
 - abandoned between 1988-1975
 - abandoned between 1965-1974
- Sampling: 2000, 2008, 2010, (2015, 2017)
- Traits of vascular plant species
- Functional diversity (Rao's quadratic entropy) of plots compared to random
- Effect sizes from the comparision for every plot
- Changes of CWM and effect sizes were checked by linear mixed effect modell

Pictures from old-fields

Studied plant traits

Connected to regeneration:

- Seed weight
- Clonality
- Flowering start, end, long, (in months)

Connectet to vegetative growth:

- SLA (specific leaf area, mm²/mg)
- LDMC (leaf dry matter content, mg/g)
- Leaf size, mm²
- Generative maximum height
- Life span
- Lateral spread

Data source:

- LEDA, Hungarian Flora,
- Török et al. 2014, 2016 for seed weight,
- own measurements for ~ 150 species SLA, LDMC, height, partly in: Lhotsky et al. 2016

1. Changes of community weighted mean (CWM) of traits between 2000-2010 Life span: annuals ψ , perennials \uparrow SLA ψ ,

LDMC \uparrow , start, end and lenght of flowering time \uparrow , generative height \uparrow , leaf size \uparrow Seed weight: no changes in CMW (average)

- 2. Detection of assembly rules:
- a.) No changes during the succession in trait dispersion:

seed weight, lateral spread: divergent

leaf size : convergent

- 2. Detection of assembly rules:
- b.) Changes during the succession in trait dispersion:
- SLA, LDMC, life forms, generative height, flowering start, end and lenght

several patterns, e.g. life form: convergent

- 2. Detection of assembly rules:
- b.) Changes during the succession in trait dispersion:

SLA: changes in AG1 2000 and 2008, 2010, and in AG2 2000 and 2008

- 2. Detection of assembly rules:
- b.) Changes during the succession in trait dispersion:

LDMC: divergence

3. Comparing space-for-time substitution and the long-term observation

SFT:

- CWM of traits change where already detetable
- Assembly rules: very few, only in SLA

short:

More detectable changes in long-term observation Detectable slowing of changes

Conclusions

- CWM of traits changes similar to the expectation
- First long-term observation about the changes of several traits during succession
- Non-random trait distribution was detectable in this situation
- Distribution of 3 traits did not change (e.g.seed weight) with time = "constant assembly rules"
- Distribution of 7 traits show changes during succession, however many types of changes = "changing assembly rules"
- Only LDMC change according to the expectation
- Environmental filtering act through the life form and SLA distribution

Take home message

- There are assembly rules during succession → non-random process
- However every trait dispersion shows different pattern, no clear trends → different speed and direction of changes?

Acknowledgement:

Field work:

Ágnes Árvai, László Somay, Rebeka Szabó

Financed by:

- "Természetes és mesterséges ökoszisztémák kölcsönhatásai: a biodiverzitás, az ökoszisztéma funkciók és a tájhasználat értékelése az Alföldre, 2002-2008" című projekt (NKFP6-0013/2005)
- MTA postdoc scholarship 2015-2017

Thank you for your attention! Paldies!